H(t)=-16t^2+320t+5

Simple and best practice solution for H(t)=-16t^2+320t+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+320t+5 equation:



(H)=-16H^2+320H+5
We move all terms to the left:
(H)-(-16H^2+320H+5)=0
We get rid of parentheses
16H^2-320H+H-5=0
We add all the numbers together, and all the variables
16H^2-319H-5=0
a = 16; b = -319; c = -5;
Δ = b2-4ac
Δ = -3192-4·16·(-5)
Δ = 102081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-319)-\sqrt{102081}}{2*16}=\frac{319-\sqrt{102081}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-319)+\sqrt{102081}}{2*16}=\frac{319+\sqrt{102081}}{32} $

See similar equations:

| 15+8b=8(b+1) | | (x2+4)(x2+4)-11(x2+4)+24=0 | | k3-11=-5 | | 5^-2b=1/125 | | 16^-2a=64 | | -7=-6+n/12 | | 27+8r=7(-3+2r) | | (x2+3)(x2+3)2=4x2+12 | | 1/5(x-20)=44-x | | 2b+23=3(7b-5) | | (6x+7)=(11x-2)+90 | | 3x2+3x=17x−8 | | 5m+10=-80 | | -4-3m=-4m+3 | | -7x-38=11x+42 | | 9x^2+6=87 | | -14x-63=5x+117 | | x^2+4x+84=10 | | 3×-32=-7x+28 | | 17/5-6x=13 | | -21+7x=5x+17 | | (3x+5)(3x+5)+5(3x+5)+6=0 | | 3x−5​(x−5​)=−6+5x−18 | | 8x-23=6x-1 | | (6x+5)^2=3 | | -p-35=-3(1-p) | | 82+44+x+66=180 | | (x2-6)(x2-6)=-3x2+18 | | 4(b-3)=8 | | (3x-2)(3x-2)-4=9x-6 | | 66+x-2=180 | | 2(5x4)=x |

Equations solver categories